Vai al contenuto principale
Oggetto:
Oggetto:

X-Ray Spectroscopy for the Characterization of Molecules and Materials

Oggetto:

X-Ray Spectroscopy for the Characterization of Molecules and Materials

Oggetto:

Academic year 2023/2024

Course ID
CHI0142
Teacher
Elisa Borfecchia (Lecturer)
Degree course
Materials Science [0208M21]
Materials Science [0202M21]
MaMaself
Year
1st year, 2nd year
Teaching period
First semester
Type
Optional
Credits/Recognition
4
Course disciplinary sector (SSD)
CHIM/02 - physical chemistry
Delivery
Class Lecture + Lab Practicals
Language
English
Attendance
Obligatory
Type of examination
Oral
Oggetto:

Sommario del corso

Oggetto:

Course objectives

The course aims at providing an overview on the potential of X-ray spectroscopy to characterize molecular species, materials and nanomaterials, together with the theoretical basis and the experimental know-how required to successfully apply such methods to multi-disciplinary research problems. The course will focus on X-ray absorption and emission methods in both the hard and soft X-ray domain, with an emphasis on their applications in chemistry, material science, and nanoscience. Through a final "hands-on" training, the course will also provide knowledge and skills about synchrotron large-scale-facility-based research and data pre-treatment and analysis/interpretation.

L'obiettivo del corso è di fornire una panoramica sulle potenzialità della spettroscopia a raggi X per la caratterizzazione di specie molecolari e materiali (eventualmente nanostrutturati) e sviluppare congiuntamente le basi teoriche e le competenze sperimentali necessarie per applicare tali metodi di analisi a problemi di ricerca di natura multi-disciplinare. Il corso sarà focalizzato sulle spettroscopie di assorbimento ed emissione, nei range energetici dei raggi X duri e morbidi, in particolare per applicazioni in chimica, scienza dei materiali e nanotecnologia. Attraverso un training pratico, il corso intende anche fornire conoscenze e competenze rispetto trattamento dati ed analisi di base per le spettroscopie discusse e le modalità di accesso alle facility internazionali di luce di sincrotrone ove tali medodi vengono applicati.

Oggetto:

Results of learning outcomes

  • Strengthening of basic notions about: physical basis of radiation-matter interaction and their implementation in photon-in spectroscopies; X-ray sources and of the properties of the produced X-rays, related characterization opportunities.
  • Acquisition of theoretical and experimental knowledge required to apply and interpret X-ray absorption and emission spectroscopies to determine structural and electronic properties of molecular species and materials.
  • Critical understanding of the differences and complementarities between hard and soft X-ray spectroscopy
  • Acquisition of knowledge and know-how about: pre-treatment and basic analysis of XAS data; designing, proposing and performing experiments at large scale facilities
Oggetto:

Program

  • Brief review about: (i) Interaction between radiation and matter and its use in the characterization of materials: Transmission, scattering, absorption; excitation and de-excitation processes; overview on photon-in spectroscopies, focusing on the X-ray spectral domain. (ii) X-ray sources, from X-ray tubes to synchrotrons and XFELs: how X-ray photons are produced, their key properties and implications for the characterization of materials.
  • X-ray Absorption spectroscopy (XAS) in the hard X-ray domain: basic principles, experimental requirements, setups, and detection schemes; XANES and EXAFS regions: theoretical background and accessible information.
  • Soft X‐Ray Absorption Spectroscopy (NEXAFS): General theoretical and experimental/sample environment considerations in comparison with hard X-ray methods; electronical/chemical sensitivity of K-edge spectra of light elements (C, N, O) and L-edge spectra of transition metals; polarization-dependent NEXAFS, experimental setups and state-of-the-art approaches to bridge the pressure gap.
  • X-ray Emission spectroscopy (XES): Basic theory of XES; chemical sensitivity of core-to-core and valence-to-core transitions to metal centers an their ligand environment; high-energy resolution XANES and resonant XES; experimental setups: source, spectrometers, detectors.
  • Time-resolved X-ray spectroscopy on different time-scales: Quick-EXAFS and energy dispersive EXAFS; Ultrafast XAS and XES using the laser-pump X-ray probe scheme.
  • Space-resolved X-ray spectroscopy: introduction to X-ray focusing optics; micro(nano)-spectroscopy & spectro-micro(nano)scopy approaches in the hard and soft X-ray domains.
  • Selected case studies about the application of X-ray spectroscopy: metal ions in porous frameworks.
  • Laboratory - “Hands-on" training on: (i) Optimizing samples for XAS and assessing the best XAS detection mode; (ii) Basic data treatment and interpretation of XAS data using ATHENA; (iii) XANES Linear Combination Fit (LCF) analysis with ATHENA; (iv) EXAFS fitting using ARTEMIS.
Oggetto:

Course delivery

The course (frontal lessons, 3 CFU, 24 h) and the “hand-on” training modules (1 CFU, 16 h) will be given in English.

 

Oggetto:

Learning assessment methods

The final examination will consist in an oral exam, organized as follows:

  • Presentation (15/20 min, 10/15 slides) about one topic covered in (or relevant to) the course selected by the student (e.g., an X-ray spectroscopy technique, or a specific implementation of a technique, a research case-study/application field using X-ray spectroscopy, …)
    Starting from the topic presented, the student should be ready to address a general question about the topics covered in the lessons.
  • A digital laboratory logbook (.pdf file) reporting the activity carried out during the laboratory part of the course, has to be sent by e-mail to the professor 1 week before the exam date, at latest.
  • The evaluation of the logbook (A, B, C marks) will represent a “bonus” with respect to the mark (X/30) obtained in the oral exam (A: + 2/30; B: + 1/30; C: + 0/30).
    Only in the case the logbook is not delivered in due time, the student will receive a penalty of -2/30 with respect to the mark obtained in the oral exam.
  • Loogbook delivery, at latest the day before the exam date, is in any case necessary condition to be admitted to the oral exam.
Oggetto:

Support activities


The students are encouraged to contact the professor by e-mail (elisa.borfecchia@unito.it) at any time for questions on the course contents (frontal lessons and laboratory activities), advices and eventually support material about the topic selected for the exam.

Office hours for students: Please contact the professor by e-mail to schedule an on-line (using the Webex platform: https://unito.webex.com/meet/elisa.borfecchia) or in person appointment.

Teaching materials: The teaching materials (lesson slides, laboratory guide and video-tutorials) will be made available in Moodle page of the course (
https://elearning.unito.it/scienzedellanatura/enrol/index.php?id=3221) before the lesson/lab sessions.

Suggested readings and bibliography

Oggetto:

  • Lesson slides (sufficient to adequately prepare the exam)
  • Additional textbooks and suggested bibliography:
  • van Bokhoven, J. A.; Lamberti, C., X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications. Wiley: 2016.
  • Stöhr, J., NEXAFS Spectroscopy. Springer Berlin Heidelberg: 2013.
  • Calvin, S., XAFS for Everyone. Taylor & Francis: 2013.
  • Selected literature reviews and research papers, depending on the application case studies selected during the course also based on the feedback received by the class.


Oggetto:

Notes

The students with special needs and disabilities may find information on the follow website:

and in particular 
Oggetto:

Class scheduleV

Lessons: from 03/10/2022 to 22/12/2022

Enroll
  • Open
    Oggetto:
    Last update: 03/05/2024 12:27
    Location: https://www.materials-science.unito.it/robots.html
    Non cliccare qui!